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Monotonicity of energy eigenvalues for Coulomb systems 

Renate Englisch 
Sektion Physik der Karl-Marx-Universitat Leipzig, DDR-7010 Leipzig, Kark-Marx-Platz, 
D D R  

Received 9 February 1983 

Abstract. Generalising results by Reed/Simon and Thirring, we prove for a large class 
of Hamiltonians (among others, Hamiltonians of Coulomb systems) which can be written 
in  the form H ( a )  = H,,+aH' that their eigenvalues decrease with increasing a.  We apply 
this result to Coulomb systems in which the distances between the infinitely heavy particles 
are varying and also use it to obtain a completion and simplification of Adamowski er a l ' s  
proof for the stability of the biexciton. 

1. Introduction 

In  comparison with the vast number of calculations of energies in Coulomb systems, 
there are only a few rigorous statements concerning the qualitative behaviour of the 
energy as a function of some parameter a.  Such results help to judge the accuracy 
of approximate energy calculations. The most famous example of such qualitative 
statements is that the first eigenvalue, E l ( & ) ,  of the Hamiltonian H ( a )  =Ho+aH' is 
a concave function of a. From the concavity we conclude the monotonicity of the 
ground-state energy (lemma 4). In order to get analogous results for the excited-state 
energies €,(a), i > 1, we present in lemma 5 a strong generalisation of a proposition 
by Reed and Simon (1978). Thus we can prove for a 3 0 that €,(a) s 0 and E , ( a ) / a  
is decreasing if H o  = X - AJmI and H' = I: V, (r ,  1 + X VI, ( r , ,  r, 1 with lim r ,  V , ( r , )  = 
limlr,-r,l-m V,,(r,, r , )  = 0 (theorem 7). For Coulomb systems a complete distinction of 
all possible cases is given in theorem 8.  

In Q 3 we conclude from scaling arguments that E , ( R )  s 0 and R €,U?) is 
decreasing, where E , ( R )  denotes the ith eigenvalue of H ( R ) =  
X-AJm, + ~ z l z f / ~ r l  - - ~ , ~ + ~ z 1 Z k / ~ r ,  - R  'Rkl (theorem 10). The value of theorem 10 
becomes obvious when one remembers that it is derived for the general case of 
arbitrary charges t, and Zk, while statements concerning the monotonicity of E 1 ( R )  
explicitly depend on the kind of charges (cf remark 15). A simple special case of our 
theorem 10 has already been proved by Thirring (1979), who showed the monotonicity 
of R 2 E 1 ( R )  for HS (Born-Oppenheimer approximation assumed). Hoffmann- 
Ostenhof (1980) and Lieb and Simon (1978) presented a proof for the increasing of 
E 1 ( R )  of H i  and of an electron in a field of protons respectively. Lieb (1982) 
generalised the second proof to the energy E1(R1 , .  . . ,R,,,) of an electron in a field 
of m protons, where the positions of the protons cannot be mapped into each other 
by a similarity transformation. 

We, however, show, transferring the proof by Hoffmann-Ostenhof to an electron 
in the field of a dipole, that E I ( R )  is strictly monotone decreasing for R > R,  (lemma 

0 1983 The Institute of Physics 3179 



3180 R Englisch 

16). As proved by Alvarez-Estrado and Galindo (1978), R, = 0.639 415 is the distance 
of the dipole for critical binding of the electron. Hunziker and Gunther (1980) repeated 
this proof by a more elegant method, completing the approach by Brown and Roberts 
(1967). 

With the help of a result by Munschy and St tb t  (1973) we prove that in the 
dipole-exciton system there is (exactly one) other critical value R > R, for which the 
binding energy is non-analytic (lemma 18). 

In 0 4  we investigate the ground-state energy and excited-state energies of the 
biexciton for which Adamowski er a1 (1972) proved stable binding €or all mass ratios 
U. We overcome a weak point in their proof, simplify it by using concavity arguments, 
sharpen one conclusion and add a statement concerning E ' ( a )  = Z:=lEi(a) (theorem 
19). 

2. Monotonicity and concavity of energies 

In the sequel Ho and H '  are self-adjoint operators with a common essential domain 
(cf Reed and Simon 1972, § 8.2). Let us denote by E , ( a ) ,  cp,(a), the ith eigenvalue 
and the ith eigenvector of H ( a )  = HO+aH',  respectively (counting multiplicity, a L 0), 

T,(a) ,  V ' ( a )  = E ' ( a )  - T ' ( a ) .  If H ( a )  has only k < i eigenvalues below the essential 
spectrum then put &+l(a)  = E k + , ( a )  = - . =E,(a):=inf uessH(a) .  If Ek = Ek+l 
choose ( P k  orthogonal to ( P k + l .  

E ' ( a )  = x ; = l  1 9  = ((Pl(a), Ho(P!(a)), = x;=l TJ(a 1 7  Vl(a) =El(a) - 

Definition 1. E ( a )  is concave if for every A with 0 6 A s 1 and p = 1 - A ,  E(Aa + p p )  3 
AE(a ) + pE(P 1. 

Lemma 2. For arbitrary Ho, H' and a 3 0  it holds that E ' ( a )  is concave, Ti(a) is 
increasing and V ' ( a ) / a  is decreasing. 

3 A C ((0) (a L ~ ( a  ) c p J  (a  + p C ((P,(P 1, H(P ) cp I  (P 1) = hE ' (a )  + PE'(@ ). 
I I 

The '3' sign follows from the min-max principle (cf e.g. Thirring 1979, 0 3.5, 21) 
which yields 

where the minimum is taken over all orthonormal systems {I++} with j = 1, . . . , i. Thus 
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the concavity is proved. Analogously, it holds that 

~ ' ( a  = ~ ' ( a  + vi(a) 

Conversely we get E' (@)  = P i p ) +  vi(@) s P ( a ) + ( p / a ) v i ( a ) .  
If a < p then the addition of these two inequalities yields 

(qj (p) ,  ( ~ 0  +aH')q j (P) )  = T ' ( P  1 + ( a / ~ )  v ' (P)*  (2) 
j = l  

vi ( a )  + vi ((3) S ( a / @ )  vi ( p )  + @/a  ) vi (a  ) 

and 

From (2) and (3) we see 

T ' ( P ) -  T ' ( a )  2 v ' ( a ) - ( a / p ) v ' ( p ) s o .  
If H(Aa + p p )  has only k < i eigenvalues below the essential spectrum then for j > k 
one can choose an orthonormal set of approximate eigenfunctions cp: with 

E,(Aa +pP)a( I l / : (Aa + P P I ,  H(Aa +c~p)cp',(Aa +pLP))--. 

Then E'(Aa + p P )  2AE ' (a )  + p € ' ( P )  - E  for arbitrary E >0, and hence concavity is 
proved also in this case. We complete the proof for T'  and V' analogously. 

Remark 3. The concavity of E ' ( a )  is a well known property (cf e.g. Thirring 1979, 
§ 3.5,23) .  For further useful concavity properties, cf Thirring (1979, § 4.3,  19 and 
3: 4 . 6 , 4 ) .  If €'(a) is differentiable then the monotonicity of TI(&) can also be obtained 
with the help of the Feynman-Hellmann relation d€ ' (a ) /da  = V ' ( a ) / a  and the 
concavity condition of € ' ( a ) ,  which is for twice differentiable functions equivalent to 
d2E ' (a ) /d2a  0. Thus 

d T ' ( a ) / a  = d ( E ' ( a )  -a  dE ' ( a ) /da ) /da  = -a d2€'(a) /d2a 3 0. 

This approach was used by Misawa (1968) in his monotonicity proof for Tl (a ) .  In 
addition, he had to assume the applicability of perturbation theory since the concavity 
condition used by him is based on it in the following manner. Let (ao-a)H'  be a 
perturbation of H ( a )  = Ho+aH' which has the unperturbed eigenfunctions cp?)(a) 
and eigenvalues €: ' ' (a) .  Perturbation theory yields El(ao)  = Z ~ = o ( a o - a )  E ( a )  
with E'2' (a)  = Z l t l  (cp:O1, H'cpjo')2/(E:o' -E!") < 0. Then 

k ( k J  

d2€l(a0)/da&usa = 2E'2'(a) < 0. 

But as has been shown above, the concavity of E ' ( a )  and the monotonicity of T ' ( a )  
can be concluded independently of the applicability of perturbation theory and of 
differentiability conditions. 

L e m m a 4  If y < a  </3 a n d E ' ( a ) s E ' ( y )  t h e n E ' ( p ) s E ' ( a )  and V ' ( p ) s  V ' ( a )  (i.e. 
E' and V' are monotone decreasing functions). If E ' ( a ) < E ' ( ? )  then E ' ( P ) < E ' ( a )  
and V ' ( p )  < V ' ( a )  (i.e. E' and V' are strictly monotone decreasing functions), 
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Thus € ' ( a ) s E ' ( p ) .  If E ' ( y ) > E ' ( a )  one gets a '> 'sign in the last inequality of (4) 
and hence E ' ( a ) > F ( p ) .  If € ' ( a )  is (strictly) monotone decreasing then V ' ( a )  = 
E ' ( a )  - T ' ( a )  is also (strictly) monotone decreasing since, by lemma 2, T ' ( a )  is always 
increasing. 

From the monotonicity of E i ( a )  one cannot conclude the monotonicity of E i ( a )  
for i > 1 (cf Thirring 1979, 9: 3.5, 25). The monotonicity of € , ( a )  is only derivable 
under further restrictions. 

Lemma 5. If E, ( a  ) s E1(0)  and 0 < a < p then E, ( p )  is monotone decreasing, (E,  ( p )  - 
El(O))/P s (E , (a)  -El(O))/a,  V,(a)  c 0 and Vi(@) is at least linearly monotone 
decreasinghe. V ' ( p 2 ) <  V ' (p , )and  V ' ( p 2 ) / p 2 s  V ' ( P 1 ) / P ~ f o r a  < P I  < p J .  I f E , ( a ) <  
E1(0)  then E, ( p )  is strictly monotone decreasing, V, ( a )  < 0 and V ' ( p )  is at least linearly 
strictly monotone decreasing (i.e. Vi (p2)  < V ' ( p l )  and V ' (p2) /p2  s V ' ( p l ) / p l  for 
a < P I < P 2 ) .  

Remark 6. The monotonicity of E i ( p )  has been proved in Reed and Simon (1978, p 
79), under the additional assumption aessH(a)  = [O; a). But in systems with more 
than one light particle in general it holds that a,,,H(a) < 0, i.e. for these systems the 
version by Reed and Simon is not applicable. The condition of lemma 5 does not 
imply the concavity of E i ( a )  for i 2 2, as already simple examples of diagonal 2 x 2 
matrices show. 

Proof of lemma 5. Let Yl i  be an arbitrary i-dimensional subspace and 

From the min-max principle 

= (E,(a)--E1(0)) /a .  (6 )  

(E,  ( a )  -E1(O))/a @,(a)  -E,(O))/P (7) 

The assumption E, (a )  s E 1 ( 0 )  yields 

and therefore, in connection with ( 6 ) ,  it holds that El(@) s E l ( a ) .  
Now obviously E,@)  c E1(0)  and we can repeat the proof putting a = p1 and 

p = p2.  Thus the monotonicity of E , @ )  has been shown. The assumption also yields 

v, (a ) = E, (a  ) - Ti (a  ) = E, (a  1 -(VI (a  1, H(O)cp, (a  1) 
~ E E , ( a ) - ( c p l ( O ) , H ( O ) c p l ( O ) ) ~ O .  

From this relation and inequality (3) we see that V i ( p 2 ) s p 2 V 1 ( p I ) / p 1  s V ' ( p l )  which 
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satisfy our definition of linear monotonicity. If Ei (a )  <€1(0) then (€1(a)-El(O))/a < 
(Ei(a)-E1(O))/P,Ei(P)<Ei(a)  andtherewithEi(P2)<Ei(P1), Vi(a)<O. If H ( a )  has 
only k < i  eigenvalues below the essential spectrum then we proceed in the same 
manner as in the proof of lemma 2. 

In the following the notation 'light' and 'heavy' particles is used for particles 
described in the Born-Oppenheimer approximation with masses m < CO and m =a, 
respectively. Light particles have the charges z ,  and the positions Ti ,  heavy particles 
have Zi and Ri. 

Now we can introduce the main theorem. 

Theorem 7. Let H (a  ) = Ho + aH'  with Ho = XY= 1 - AJm, and 
n 1-1 ti m 

I = 2  r = l  r - 1  k = l  
H ' =  1 z,z,/Ir, -r,l+ z,Zk/lrl -&I. 

Then for all i and all a 2 0 it holds that: E ' ( a )  is concave. T ' ( a )  increases monotonely. 
Ei(a)-and hence also E'(a)-is an at least linearly monotone decreasing function. 
V '  (a ) is an at least linearly monotone decreasing function. 

Proof. The concavity of E ' ( a )  and the monotonicity of T'(a) immediately follow from 
lemma 2. The linear monotonicity of € , ( a )  and V ' ( a )  can be concluded from lemma 
5 ,  since our Hamiltonian (8) satisfies the assumption 

E , ( a )  SE l (0 )  = 0. (9)  

We take for every E > O  a normalised test-function pi, orthogonal to the first ( i  - 1) 
eigenvectors, which describes the following situation. All light particles have a 
sufficiently small kinetic energy and are sufficiently far away from all R, and from 
each other. The min-max principle (cf ( 5 ) )  yields 

(10) 

for arbitrarily small E .  Thus E, ( a )  s 0 and therewith the linear monotonicity of V 1 ( a )  
and € , ( a )  is proved. If H ( a )  has only k < i  eigenvalues below the essential spectrum 
then the above proof shows Ek+l(a)SO. Per definition we then have E , ( a ) =  

E, (a  c (pi, (Ho + aH')p i) < E 

Ek>.l(a) c 0. 

Theorem 7 comprises the following three cases. In the last two cases the 
propositions concerning the monotonicity of Ei(a) and V i ( a )  can be sharpened. 

Theorem 8. 
(a) If all particles have charges of the same sign then V i ( a )  = T i ( a )  = & ( a )  = 0. 
(b) If there is at least one pair of oppositely charged heavy particles and all light 

particles have charges of the same sign, then there is for every i an ai such that Ei (a )  
and V ' ( a )  are at least linearly strictly monotone decreasing for a >ai. (A typical 
example is the electron bound to a dipole, cf e.g. Alvarez-Estrado and Galindo (1978).) 

(c) In all other configurations E i ( a )  and V ' ( a )  are at least linearly strictly monotone 
decreasing for a 20. (Typical examples are: H2 and H i  in Born-Oppenheimer 
approximation, D' + A- + exc in effective-mass approximation (D' denotes a donor, 
A- an acceptor, exc an exciton consisting of an electron e- and a positively charged 
hole h+).) 
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Proofs. 
(a) If all charges have the same sign then V,(a)  2 0 and therefore we get € , ( a )  3 

E 1 ( 0 )  + V,(a)  sE1(0) = 0. Together with (9) this implies € , ( a )  = 0. From V , ( a )  3 0 
and V , (a ) sO(by lemma5)  wesee V , ( a ) = T , ( a ) = O .  

(b) For every E > O  one can find a test function cp:, orthogonal to the first (i - 1) 
eigenvectors, which describes one light particle (e.g. that with index 1) as being SO 
closely bound to one of the heavy particles having an opposite charge to it, that 

The other light particles are described as having a sufficiently small kinetic energy 
and as being far away from all R k  and from each other. Thus we only have to consider 
the kinetic energy T = (pi, (-Al!ml)cpi) (which can be very high due to the localisa- 
tion) and the potential energy a V. Obviously there exists an a ,  such that for all a 3 a,, 
E,  (a  ) s (cp i, (Ho  + aH')cp L) = ? +a + E < 0. Now lemma 5 yields the linear monoton- 
icity of E, (&)  and V ' ( a )  for a >a,. 

(c) All other configurations can be reduced to two cases. 
(c l )  All heavy particles have charges of the same sign and at least one light particle 

has the opposite charge to this. Let z l Z ,  < 0 for all i. We choose test functions cpi 
consisting of the hydrogen-like solutions of the Hamiltonian - A l / m l  + a z l Z l / l r l  - R I ~ ,  
multiplied by a function describing all other light particles as having a sufficiently 
small kinetic energy and as being far away from each other and from all R , .  Then 
€ , ( a ) d ( p : ,  H ( c u ) c p ~ ) ~ - m l ( a z 1 Z 1 / 2 i ) 2 + ~  for all F > O .  Thus€ , (a )<O for a l la  > O  
and lemma 5 yields the linear strict monotonicity of E , ( a )  and V ' ( a )  for a 3 0. 

(c2) The heavy particles are arbitrarily charged and at least two light particles have 
charges of opposite sign to each other. Let z l z 2 < 0 .  We get our test function cp: by 
multiplying the hydrogen-like solutions of the Hamiltonian - A l / m l  - A2/m2 + 
az122/lr1 -r2/ by a function describing the other light particles and the centre of gravity 
of the first two particles as having small kinetic energy and as being far away from 
each other and from all R,. For every E > 0 it holds that 

E,(a)d(cp0:, H(a)cp:) = - ~ ( a z ~ z ~ / 2 i ) ~  + E  with l lp  = l / m l  + l / m 2 .  
Analogously to case (c l )  we can now conclude the linear strict monotonicity of € , ( a )  
and V ' ( a )  for a 2 0. 

If H ( a )  has only k < i eigenvalues below the essential spectrum then we proceed 
in the cases (b) and (c) in the same manner as in the proof of theorem 7 .  

Remark 9. The proofs of theorems 7 and 8 are related to the proof of the trivial 
part of the HVZ-theorem (cf Reed and Simon 1978, p 122). Hence, one can also 
prove theorem 7 and, for n 3 2 ,  theorem 8 by applying the HVZ-theorem, instead 
of the min-max principle. In case (b) the HVZ-theorem additionally yields that 
sup, a,  < CO or-in other words-that E,(a ) becomes negative: E,(a ) s 
~ , ( a ) s i n f  c+( -A l /ml+a  x.zlzk/lrl-RkI)<O for sufficiently large a .  

3. The E ( R )  dependence 

Often of interest is the case where not only the coupling constant a but also the 
distance between the heavy particles varies. The Hamiltonian for such a Coulomb 
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system can be written in the general form 

and 

1 = 2  , = 1  1 = 1  k = l  

where E is the dielectric constant. E,(&,  m, R )  denotes the ith eigenvalue of (11); if 
we keep m and E constant we write shortly E,(R) .  (E , (m)  and E l ( & )  are defined 
analogously.) 

First (theorem 10) we derive some results concerning R2E, (R)  and RE,(R)  for all 
Hamiltonians of the form (11). In lemma 12 we deal with the complete Born- 
Oppenheimer energy E: ( E ,  m, R )  (including the Coulomb interaction between the 
heavy particles). Lastly we present statements regarding E l @ )  in some special cases. 
(Of course the following results are only non-trivial if at least two heavy particles are 
present.) 

Theorem 10. All statements of theorems 7 and 8 are valid for the Hamiltonian (11) 
if E , ( a )  is replaced by R2E, (R)  or mE, (m)  or E, (&)  as a function of 1 / ~ .  In particular 
that means: 

(i) El(&,  m, R )  s 0; 
(ii) mE,(m) and R2E, (R)  are decreasing and E,(&)  is increasing; 
(iii) E, ( m )  and RE, ( R )  are decreasing and EE, ( E  ) is increasing; 
(iv) mE'(m),  R 2 E i ( R )  and & E 1 ( & )  are concave. 

Proof. Substitute r, + Rr,. Then 

E,(&, m, R I  = E,(Ho(m) + H ' ( R ) / E )  = E , ( H , ( m ) / R 2  + xzlz,/(lrl -r,IER) 

+ x z i z k / ( l f i  -Rk I&R 1) = (mR 2)-1E, (HO(1) f mR * H'( I ) / &  ). 

Putting a = mR/E it is obvious that Ho(l )+mR H ' ( ~ ) / E  =H(cr), as defined in (8). 
Since theorems 7 and 8 were proved for (8), their statements must also be valid for 
mR2E,(E, m, R )  and-keepingconstant twovariables at a time-also for E l ( & ) ,  mEl(m) 
and R2El (R) .  Now the linear decrease of € , ( E ) ,  mE,(m) and R2El (R)  with respect 
to 1 / ~ ,  m and R, respectively (theorem 7), immediately yields the increase of E € , ( & )  

and the decrease of E , ( m )  and RE,(R) .  The easiest way to get the concavity of & E ' ( & )  
is the direct application of lemma 2 to E H ~ + H '  = EH(&) .  

Remark 11. A simple special case of theorem 10 has already been proved by Thirring 
(1979, $4.6,24),  who showed the monotonicity of R2E1(R)  for H;. (He did need 
the strong restriction H ' (  1 )  s 0.) 

Lemma 12. For the energy Er (& ,  m, R )  of the complete Born-Oppenheimer Hamil- 
tonian 

(12) 
m i - 1  

WE, m, R )  = H ( E ,  m, R )  + C C zfzk/(lRi - R ~ I E R  
1 = 2  k = l  

(which includes the Coulomb interaction between the heavy particles) it holds that 
( i )  EE'.I(E), mE', '(m) and R2E'. ' (R) are concave; 
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(ii) Er(m)  and RE:(R)  are decreasing and & E : ( € )  is increasing; 
(iii) if ~z ,Zk/IRi-RkI<O,then€r(&,  m, R)<O;mEr(m)andR2Er(R)arestrictly 

decreasing and E:(& ) is strictly increasing. 

Proof. From ( 1 2 )  i t  is obvious that 

Er ( E ,  m, R ) = E, ( E ,  m, R + xZ,Zk/((R,  -Rk IER 1. 

Now assertion (i) follows from theorem lO(iv) and the fact that the sum of a concave 
and a linear function is concave. Theorem l O ( i i i )  yields our assertion (i i ) ,  since 
xZ,Zk/lR, --Rkl is a constant and therefore it cannot change the monotonicity. If this 
constant is less than zero, then by theorem l O ( i )  E:(€ ,  m, R)<O which yields in 
connection with lemma 5 and theorem 10 the assertion (iii). We can also prove (iii) 
remembering that in the case considered mR xziZk/( /R,  -RklE) is strictly decreasing 
with respect to mR/& and that the sum of a decreasing and a strictly decreasing 
function is strictly decreasing. 

Remark 13. In the following we only consider systems consisting of two heavy particles. 
Let them have the coordinates (0; 0;  0) and (1; 0; 0) respectively such that the scaling 
factor R from (11) immediately denotes the distance of the heavy particles. Let R 
be the vector ( R ;  0;  0). Then (11) reads 

Of course, theorem 10 also applies to (13). 

Remark 14. If the system D'+A-+ exc is treated in effective-mass approximation, 
its Hamiltonian can be written in the form (13) with z1  = -z2 = -Z1 = Z 2  = -lei. 
Therefore the energies E, (€ ,  m, R )  of this system satisfy all statements of theorem 
10. But the Coulomb approximation (cf Bindemann and Unger 1973) which yields 

2 

E l ( & ,  m, R )  = ( - m m , e 4 / ( 2 ~ 2 ) ) + e 2 / ( ~ R )  
r = l  

violates statements ( i )  and (ii) of theorem 10 as well as case (c) of theorem 8 when 
either 1/&, m or R is small. It is well known that the Coulomb approximation only 
gives good values for large R ; here we have shown that it yields a qualitatively wrong 
behaviour of the energy. 

It is not possible to get such strong results regarding E ( R )  for the large class of 
Hamiltonians described by (11). Remark 15 and lemma 16 contain some statements 
for E l ( R )  in special cases of (11). 

Remark 15. Narnhofer and Thirring (1975) proved that if in (1 1) all z ,  < 0,  all Z k  > 0 
then E l ( R )  >E1(0) .  Lieb and Simon (1978) showed for n = 1, f l  < O ,  all z k  > O  that 
E , ( R )  is monotone increasing. (For m = 2 there is also another proof for the same 
statement by Hoffmann-Ostenhof (1980).) 

Lieb (1982) derived a stronger result for the same case. If there are two sets {RI} ,  
{ R : }  with lR, -R,I a / R :  -R;l for all pairs i, j then El({Rz})z=El({R~}). 

In the following we prove that the ground-state energy of an electron bound to a 
dipole of distance R is strictly monotone decreasing for R >Rc ,  where R ,  denotes 
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the critical distance for which it holds that the system is stable for R > R ,  and unstable 
for R s R,. Alvarez-Estrado and Galindo (1978) proved in the case mml = 1/2,  
Z1 = -Z2 that 

R,=0.639 4 1 5 / / ~ - ~ ~ i Z i / .  (151 

Lemma 16. If in (13) n = 1, Z1 > O ,  Z 2  < 0 then E1(R)  is a strictly decreasing function 
for R 2 R,. 

Proof. We transfer the proof by Hoffmann-Ostenhof (1980) for the monotonicity 
of the H;’ molecule to our problem. Let mml = i, E = 1 and z 1  CO; the oppositely 
charged heavy particle has the coordinates (0; 0; 0), the equally charged one the 
coordinates (R ; 0; 0). After applying the Feynman-Hellmann relation for R > R, 
(due to theorems 12.8 and 13.46 in Reed and Simon (1978) all stable ground-state 
energies are differentiable! j we divide the integration over x into an integration from 
--CO to R and from R to CO and substitute in the first integral x+2R - x :  

dE1(R)/dR = -z1Z2 dx dy dz (x - R ) / r  -R/-’cp;(R,x, y,  z )  J J  J 
x a 3  X 

- dy dz dx(R - ~ ) / r - R l - ~  
- z1z2 I-, i, i 

x(cp:(R, 2R -x,y,z)-cp:(R,x, Y,z)) .  (16) 

From theorem 2.1 in Hoffmann-Ostenhof (1980) we see cp:(R, 2R -x ,  y, z ) 2  
cp (R, x, y, z ) ,  since our definitions W := z l Z l / r  + z l Z 2 / ) r  - R )  -E1(R)  (potential for 
x s R ) ,  V:=z1Zl/lr-2Rl+zlZ2/lr-Rl-E1(R) (potential for x S R I  yield 

w > v. (17)  
cp:(R, 2R - x ,  y ,  z)-cp:(R, x ,  y ,  z )  is not possible, since this would imply W = V 

in contradiction to (17). Therefore the integrarim in (16) gives a negative result 
(remember that z lZz > 0 and R -x < 0) and we get 

dEi(R)/dR < 0. (18) 

2 

Remark 17. With our last arguments it is at once possible to extend the proof by 
Hoffmann-Ostenhof (1980) for the monotonicity of the H; molecule to strict monoton- 
icity. This extension was also presented by a related argument in Hoffmann-Ostenhof 
and Morgan (1981). 

Now we return to the system D’ + A -  + exc and give a statement for its binding 
energy (calculated in effective-mass approximation) EB(R) = E , ( R )  - E,(R) where 
E,(R) = inf o,,,H(R). 

Lemma 18. If in (13) n = 2, z 1  = - 2 2  = -21 = 22 = - /el then the binding energy 
EB(R) = E l ( R  j -E,(R), for EB(R)  < 0, has a cusp (i.e. a discontinuous first derivative) 
at exactly one point. 

Proof. In (13), put m = ml  = 1, m2 = ml/a ,  e 2 / E  = 2. Then the Hamiltonian for the 
system under consideration reads 

H ( R )  = - A ,  - a A 2  - 2 / l r 1  -r2l+ 2/rl  - 2//r1 - R /  +2 / l r2  - R /  -2/r2.  (19) 
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Due to the symmetry of this problem ( E ( a )  = E(l/a)/cr) we restrict our considerations 
t o u 2 1 .  

Munschy and Stebe (1973) sketched a proof for the stability of this system for 
R >RC=0.639415,i .e.  EB(R)<OforR >R,.  ThecomplexD++A-+exccandissoci- 
ate into the two subsystems D' + A -  +e -  (whose ground-state energy shall be E; ( R ) )  
and h', which yields the dissociation energy 

(20) E',(R) = E I ( R ) -  E; (R 1 

E : ( R ) = E i ( R ) + l / ( l + v ) .  (21) 

or into the two subsystems D' + A -  and exc, which yields the dissociation energy 

If E q ( R ) < - l / ( l + a )  the first possibility will occur, if E ; ( R ) > - l / ( l + u )  thesecond 
one. Since, with respect to R,  - l / ( l  + a )  is a constant lying between --; and 0 and 
since E; (R)  is (due to lemma 16) strictly monotone decreasing between E; (R,) = 0 
and E ;  (m)=- l ,  there is for every U < CD exactly one R > R ,  such that - l / ( l  + U )  = 
E; (E). Therefore 

Equations (20), (21) and lemma 16 yield 

dEL(R)/dR,R=R -dE: (R)/dRiR=R = -dE; (R)/dRlR=R > 0. 

Thus the binding energy E,(R) must possess a discontinuous first derivative at R = R .  
For EB(R) < 0, is the only point with this property, since then E! (RI  for R < R 
and E' ,(R) for R > R  are analytic functions (due to theorems 12.8 and 13.46 in Reed 
and Simon (1978)). 

= 3.86 and the 
discontinuity in the first derivative of EB(R) at R = R  is about 0.11, 

From the calculations by Wallis er a1 (1960) we find for U = 1, 

4. The biexciton 

Adamowski er a1 (1972) showed that the Hamiltonian 

H ( a )  = - l / ( l  + a )  ' ( A 1  + A 2 + ( + &  +ah4) +2/r12+2/r34-  2/r13 - 2/r14 -2/r23 -2/r24 
(23) 

(describing the biexciton in effective-mass approximation) has for every U a stable 
ground state if we regard the system after the separation of the centre of gravity, 
(This can be carried out as in Thirring (1979, 3: 4.6, 1). Without the separation, (23) 
has no discrete spectrum.) U denotes the ratio 'electron masses ( m l  = m 2 )  :hole masses 
( m 3  = m4)';  r,, = Ir, - r , l ,  Equation (23) enables us to measure all energies in units of 
the free exciton. The system is invariant with respect to an interchange of the indices 
11; 2}-{3; 4}, therefore 

H ( u )  =H(l/a).  (24) 

The following theorem is (mainly) equivalent to that by Adamowski et a1 (1972), 
but we sharpen one conclusion and overcome a weak point (cf remark 20), we simplify 
the proof and add a statement concerning E ' ( a )  for i > 1. 
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Theorem 19. Equation (23) has (after the separation of the centre of gravity) a stable 
ground state for all a. E ' ( a )  is increasing and concave for ail a E [O; 13 and decreasing 
for a E [ l ;  CO).  

Proof. Put a = a / ( l + a ) .  Then f f (a)=H(O)+a(Al+h~-A~-A4)  with 

H ( 0 )  = -Al  - A2 + 2/r12 + 2/r24 - 2/r13 - 2/r14 - 2Irz3 - 21r24. (25) 

H(a)=I;I(l-a) (26) 

Equation (24) now reads 

which obviously also follows from (25). Lemma 2 and (26) yield 

E ' (  1/2) 2 E ' ( a ) / 2  + E ' (  1 - a ) / 2  = Ei(a 1. (27) 

Thus the assumption of lemma 4 is satisfied and in connection with (26) we get: ,??(a) 
is decreasing for 1 t a t $ and increasing for 0 6 a s i. 

Remembering that a =a/(1 +r) is with respect to U a monotone increasing 
function, from the monotonicity of E ' ( a )  in the intervals [O; 1/21 and [1/2; 13, it 
immediately follows that E ' ( a )  is monotone increasing for a E [O; 11 and monotone 
decreasing for a E [ 1 ; CO). 

The concavity of ,??'(a j implies that for all a E [a 1; a21 and arbitrary a1 < cy2,  ,!?'(a j 
lies above the straight line which goes through the points ( a 1 ;  ,!?'(al)) and ( a 2 ;  E ' ( a 2 ) ) .  
This follows directly from definition 1, putting a = a l ,  P = a 2  and A = ( a 2 -  
a ) / (a2 - a 1 ): 

E ' ( a )  2 (a2E'(a1j -a  &a,) +a ("2) - E ' ( a  1))) / (a2 - a1) 

Rewriting this in terms of a we get 

for all U E [al; a2] and arbitrary a1 < u2. The right-hand side of (28) describes for 
a > -1 and 

E'(a2)-E'(a,)  2 0  (29) 
the concave branch of a hyperbola going through the points (al;E'(al)) and 
(a2;  E ' (a2) ) .  Expression (29) is satisfied for O s r l  <a2 s 1. Together with (28) this 
implies that E ' ( a )  is itself a concave function for all a E [O; 11. 

Sharma (1968a) proved with the help of trial functions that 8 , (1 /2 )<-2 .  Due 
to (27) this implies ,!?,(a) < -2 for all a ,  and therefore for all U 

€1(r) < -2. (30) 

If we can show that the essential spectrum of (23) (after the separation of the centre 
of gravity) does not begin below -2, then (30) proves the stability of the biexciton 
for all a. From the physical point of view it is clear that a biexciton dissociates into 
two free excitons, which corresponds to the essential spectrum beginning at -2, and 
does not dissociate into a hole and an e-e-h' complex, since the electron is more 
strongly bounded to the positively charged hole than to the neutral e-h' complex. 
(This assumption has been used without any discussion, for example, by Adamowski 
et a1 (1972).) 
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For a mathematical proof we present lower bounds to the ground-state energy 
E: (a )  of the e-e-h' complex described by the Hamiltonian 

H 3 ( a )  = - (Al+A2+~A3) / (1  +~)+2/r12-2/r13-2/r23, (31) 

which lie above the ground-state energy of two free excitons (i.e. above -2). We 
estimate rather crudely 

E:(a)~E1(H3(a)+ah3/(1 + a ) ) =  (1 + ~ ) E ~ ( H H - ) .  (32) 

Since Grosse et a1 (1978) have found a lower bound of -1.0834 to the ground-state 
energy of the H- ion, for U < 0.84 we can continue (32) in the following way: 

(33) 

Using El(HH;) > -1.208 (Grosse et a1 1978) we analogously conclude for U 2 1.53 

(34) 

(1 +a)Ei(HH-) > - (1 + a )  X 1.0834> -2. 

E: ( a )  2E1(H3(C) + ( A 1  + A 2 ) / (  1 +U)) = [(I +a)/a]Ei(HH;) > -2. 

E: (U) 2 E1(H3(a) + (1 -a) (Al+ A h ~ ) / ( l  +(+I)  = (1 +(+)El(He+e-e ) / a  

For 0.84 < a s 1 we estimate 

(35) 

and for 1 <a< 1.53 

E : ( f l ) 3 E 1 ( H 3 ( ~ ) + ( ~ -  1 ) A 3 / ( 1 + ~ ) ) = ( 1  +(+)E1(He4,-, ). (36) 

To ensure that the right-hand sides of (35) and (36) are greater than --2, we only 
need E1(He-, e - )  > -0.790. This doubtless can be proven by the projection method 
(cf e.g. Thirring 1979, B 3.5, 31) since a variational calculation of high accuracy (Kolos 
et a1 1960) yields E1(Hete- , - )  = -0.524. Thus we have shown that the ground-state 
energy of the e'e-e- complex lies for all a above that of two free excitons. Therefore, 
due to the HVZ-theorem (cf e.g. Reed and Simon 1978, theorem 13.17), the essential 
spectrum of the biexciton begins at -2 which proves, in combination with (30), the 
stability of the biexciton. 

Remark 20. Adamowski et a1 (1972) conclude the stability, monotonicity and con- 
cavity of El(a) from the examination of the first two derivatives of El(a) with respect 
to a. But the statement (between relations (2) and (3) in their paper) that an eigenvalue 
of the Hamiltonian (23) is analytic was not proved in their appendix. In the case of 
degeneracy the left and right derivatives exist but in general they do not coincide. 
Therefore the eigenvalues need not be analytic in the points with degeneracy. Concern- 
ing the first eigenvalue, one can conclude the analyticity with the help of theorems 
12.8 and 13.46 in Reed and Simon (1978). Then theorem 19 yields dE l (a ) /da  2 0  
and d 2 E l ( a ) / d a 2  0 for a E [O; 11: d E l ( a ) / d a  s 0 for a E [ l ;  a). 

Putting a1 = O  and U Z =  1 into (28) we see that for the binding energy 
E B ( ~ )  = E, (o )  + 2 it holds that 

E B ( ~ )  (EB(O)/~+(+(EB(~)-EB(O))/(~ +U112 (37) 
i.e. the binding energy lies above a concave hyperbola going through the points 
(0; EB(0)) and (1; E B ( ~ ) ) .  Adamowski et a1 (1972) only obtained that E B ( a )  lies 
above the straight line through (0;  EB(0))  and (1; EB( 1)): 

E B ( ~ )  3 (1 -a)EB(O) +aEB(l ) .  (38) 
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Obviously (38) is a conclusion from the concavity condition d2E1(a) /da2  s 0. Our 
inequality (37) is related to the sharper estimation 

d2El (a ) /da2C -(2/(1 + a ) )  d E i ( a ) / d a  (39) 

which follows, like (28), from the concavity of E l ( a ) :  

O*d21?1(a)/da2 = (du/da)2 d2E1(a ) /da2+(d2a /da2)  d E l ( a ) / d a  

=(1 + ~ ) ~ ( d ~ E 1 ( ( + ) / d ~ ~ ~ + ( 2 / ( 1  +a))  dEi (a ) /da ) .  

Already the weaker version of our theorem 19 by Adamowski et a1 (1972) suffices 
to reject the calculation by Sharma (1968b) as it yields a qualitatively wrong behaviour 
of the energy with respect to a. Our qualitative statements of li 3 reject the Coulomb 
approximation for the system D' + A -  +exciton (cf remark 14). These are examples 
of the value of rigorous, qualitative statements. 
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Note added in proof. Due to 5 5 in Alvarez-Estrado and Galindo (1978) a finer classification of theorem 8(b) 
is possible: If the sum of the charges of the heavy particles I zk is zero or has the same sign as the light 
particles then a, > 0. If the sign of I zk is opposite to that of the light particles then a, = 0 for every i. 
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